Lithium batteries like to use graphite anode materials

As the world deals with potential supply shortages, oil prices are soaring again, with more dramatic spikes and sudden drops expected.

For consumers, that means more expensive gas for longer - prices at the pump remain above $4 a gallon. For the economy, that means more inflation. In addition to the pressure on consumers, any business that relies on oil -- from airlines and truck drivers to chemical companies and plastics producers -- will face higher costs.

Mr Pickering estimates that 2m to 3m barrels a day of Russian oil shipped by water are frozen out of the market with no direct buyers. Due to the soaring oil price, the price of the graphite in the chemical industry will also be greatly affected. He said China and India are continuing to buy Russian crude. "I'm sure there will be others willing to take on more over time," he said. Mr Pickering said he did not expect oil to return to $130 a barrel, but added that it could happen. Francisco Branch, head of commodities and derivatives at Bank of America, said the US market was ready for cyclical price spikes and price swings in the graphite.

Lithium-ion battery refers to a secondary battery system in which two different lithium intercalation compounds that can reversibly intercalate and deintercalation lithium ions are used as the battery's positive electrode and negative electrode, respectively. During charging, lithium ions are deintercalated from the positive electrode through the electrolyte and separator and embedded in the negative electrode; on the contrary, lithium ions are deintercalated from the negative electrode through discharge of the electrolyte the separator and embedded in the positive electrode. The negative electrode of the lithium-ion battery is made of harmful electrode active material, binder, and additives mixed to make a paste glue, which is evenly spread on both sides of the copper foil, dried, and rolled.

Advantages of graphite as anode material

Graphite is an allotrope of carbon, and the two are closely related. Graphite is the most stable form of carbon. (Diamond is a metastable allotrope of carbon. Although its hardness is much higher than graphite, it is the hardest substance in nature, but its stability is lower than that of graphite.)

The word "graphite" comes from the Greek word "graphein," which is resistant to high temperature and corrosion, has good electrical conductivity, thermal conductivity, and stable chemical properties, and is lighter than aluminum. In addition to being used as anode material for lithium-ion batteries, high-quality graphite can also be used in different fields such as fuel cells, solar cells, semiconductors, light-emitting diodes, and nuclear reactors.

In general, graphite has the advantages of high electronic conductivity, the small volume change of layered structure before and after lithium intercalation, high lithium intercalation capacity, and low lithium intercalation potential, and has become the mainstream commercial lithium-ion battery negative electrode material.

1650858190831382.jpg

How to get graphite?

There are two ways to obtain graphite: one is natural ore, and the other is the synthesis of coal tar. The graphite materials used in lithium-ion batteries are generally prepared by blending 55% synthetic graphite and 45% low-purity natural graphite.

Manufacturers once favored synthetic graphite because the uniformity and purity of synthetic graphite were better than natural graphite. Now it is not the same. The application of modern chemical purification methods makes it possible to obtain 99.9% pure natural graphite after heat treatment. In contrast, synthetic graphite is 99% pure, making the former more popular.

Compared with synthetic graphite, purified natural flake graphite has higher crystallinity and exhibits better electrical and thermal conductivity. In addition, natural graphite is expected to reduce the production cost of lithium-ion batteries while achieving equal or better battery performance.

High-quality graphite supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries. If you are looking for Lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com

 


The current international situation is highly uncertain, and its economic impact has not been able to be assessed properly. In addition, rising energy and commodity prices and supply chain disruptions are expected to push the price of the graphite higher.

Inquiry us

Our Latest Products

Metal Alloy High Purity Tungsten Crucibles

About Metal Alloy High Purity Tungsten Crucibles:Chemical composition:…

Metal Alloy Vacuum Coating Tungsten Melting Pot Tungsten Crucibles

About Metal Alloy Vacuum Coating Tungsten Melting Pot Tungsten Crucibles:Chemical composition:…

Metal Alloy Fine Surface 19.15g/cm3 Tungsten Targets

About Metal Alloy Fine Surface 19.15g/cm3 Tungsten Targets:Chemical composition:…

0086-0379-64280201 brad@ihpa.net skype whatsapp